Part Number Hot Search : 
SF38G ZSM560N8 MB1505 2SC5610 SUM60N02 RT8070 SF2124E 1SMC5367
Product Description
Full Text Search
 

To Download RP152L002C-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rp152x series 150ma dual ldo regulator with sequence control no. ea-200-090729 1 outline the rp152x series are cmos-based voltage regulator ics with high output voltage accuracy, low supply current, low dropout, and high ripple rejection. each of these voltage regulator ics consists of a voltage reference unit, an error amplifier, resistors for setting ou tput voltage, a current limit circuit, and a chip enable circuit. moreover, in c version of rp152x, t he start-up sequence circuit is built-in. these ics perform with low dropout voltage due to built -in transistor with low on resistance, and a chip enable function prolongs the battery life of each syste m. the line transient response and load transient response of the rp152x series are excellent, thus t hese ics are very suitable for the power supply for hand-held communication equipment. the output voltage of these ics is in ternally fixed with high accuracy. since the packages for these ics are sot-23-6 and dfn1212-6, dual ldo regulators are incl uded in each package are high density mounting of the ics on boards is possible. features ? supply current ..................................................................... typ. 40 a 2 (vr1&vr2) ? standby current ................................................................... typ. 0.1 a 2 (vr1&vr2) ? ripple rejection ................................................................... typ. 70db (f = 1khz) ? input voltage range ............................................................. 1.4v to 5.25v ? output voltage rang e.......................................................... 0.8v to 3.6v ? output voltag e accuracy...................................................... 1.0% (v out >2.0v, t opt = 25 c) ? temperature-drift coefficient of output voltage .................. typ. 80ppm/ c ? dropout voltage .................................................................... typ. 0.22v (i out = 150ma, v out = 2.8v) ? line regulat ion .................................................................... typ. 0.02%/v ? packages ............................................................................ dfn1212-6, sot-23-6 ? built-in fold back protec tion circuit ..................................... typ. 40ma ? ceramic capacitors are recommended to be used with this ic .... 0.22 f or more applications ? power source for portable communication equipment. ? power source for electrical appliances such as cameras, vcrs and camcorders. ? power source for battery-powered equipment.
rp152x 2 block diagrams rp152xxxxa rp152xxxxb vref error amp. r1_1 r2_1 vref r1_2 r2_2 error amp. current limit current limit v out1 v out2 v dd ce1 ce2 gnd vref error amp. r1_1 r2_1 vref r1_2 r2_2 error amp. current limit current limit v out1 v out2 v dd ce1 ce2 gnd rp152xxxxc vref error amp. r1_1 r2_1 vref r1_2 r2_2 error amp. current limit current limit v out1 v out2 v dd ce1 ce2 gnd 100
rp152x 3 selection guide the output voltage, auto discharge function*, and the tapi ng type for the ics can be selected at the user's request. the selection can be made with designating the part number as shown below; rp152xxxx x-xx -x part number a b c d e code contents a designation of package type: l: dfn1212-6 n: sot-23-6 b setting combination of 2ch output voltage (v out ): serial number for voltage setting from 001, stepwise setting in the range of 0.8v to 3.6v is possible for each channel. c designation of mask option: a: without auto discharge function ? at off state. b: with auto discharge function ? at off state c: the start-up sequence f unction with auto-discharge* d designation of taping type: ex. tr (refer to taping specifications ; tr type is the standard direction.) e designation of composition of plating: -f : lead free plating (sot-23-6) none : pd plating (dfn1212-6) ? ) when the mode is into standby with ce signal, auto di scharge transistor turns on, and it makes the turn-off speed faster than normal type.
rp152x 4 pin configurations ? dfn1212-6 ? ? sot-23-6 top view 6 5 4 1 2 3 bottom view 456 321 6 5 4 12 3 (mark side) pin descriptions ? dfn1212-6* pin no. symbol description 1 v out1 output pin 1 2 v out2 output pin 2 3 gnd ground pin 4 ce2 chip enable pin 2 (?h? active) 5 v dd input pin 6 ce1 chip enable pin 1 (?h? active) ? ) tab is gnd level. (they are connected to the reverse side of this ic.) the tab is better to be connected to the gn d, but leaving it open is also acceptable. ? sot-23-6 pin no. symbol description 1 ce1 chip enable pin 1 (?h? active) 2 v dd input pin 3 ce2 chip enable pin 2 (?h? active) 4 v out2 output pin 2 5 gnd ground pin 6 v out1 output pin 1
rp152x 5 absolute maximum ratings symbol item rating unit v in input voltage 6.0 v v ce input voltage (ce pin) ? 0.3 to 6.0 v v out1 , v out2 output voltage ? 0.3 to v in + 0.3 v i out1 , i out2 output current 180 ma power dissipation (dfn1212-6) ? 600 p d power dissipation (sot-23-6) ? 420 mw t opt operating temperature range ? 40 to 85 c t stg storage temperature range ? 55 to 125 c ? ? ) for power dissipation, please refer to package information. absolute maximum ratings electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safe ty for both device and sy stem using the device in the field. the functional operation at or over these absolute maximum ratings is not assured.
rp152x 6 electrical characteristics v in = set v out + 1.0v (v out > 1.5v), v in = 2.5v (v out 1.5v) , i out = 1ma, c in = c out = 0.22 f, unless otherwise noted. the specification in is checked and guaranteed by design engineering at ? 40 c < = t opt < = 85 c. ? rp152x topt = 25 c symbol item conditions min. typ. max. unit v out > 2.0v 0.99 1.01 v t opt = 25 c v out 2.0v ? 20 + 20 mv v out > 2.0v 0.97 1.03 v v out output voltage ? 40 c t opt 85 c v out 2.0v ? 60 + 60 mv i out output current 150 ma 0.8v v out < 1.1v 10 40 1.1v v out < 1.6v 15 50 1.6v v out < 2.0v 15 55 v out / i out load regulation 1ma i out 150ma 2.0v v out 3.6v 15 60 mv v dif dropout voltage refer to the following table. i ss supply current i out = 0ma 40 60 a i standby standby current v ce = 0v 0.1 1.0 a v out / v in line regulation set v out + 0.5v v in 5.0v 0.02 0.10 %/v rr ripple rejection f = 1khz, ripple 0.2vp-p v in = set v out + 1v, i out = 30ma (in case that v out 2.0v, v in = 3v) 70 db v in input voltage ? 1.40 5.25 v v out / t opt output voltage temperature coefficient ? 40 c t opt 85 c 80 ppm / c i lim short current limit v out = 0v 40 ma i pd ce pull-down current 0.3 a v ceh ce input voltage "h" 1.0 v v cel ce input voltage "l" 0.4 v en output noise bw = 10hz to 100khz 60 vrms c version (vr2) 10 r low low output nch tr. on resistance (of b/c version) v in = 4.0v,v ce = 0v others 50 ? ) the maximum input voltage of the electrical char acteristics is 5.25v. in case of exceeding this specification, the ic must be operated on condition that the input voltage is up to 5.5v and the total operating time is within 500hrs.
rp152x 7 ? dropout voltage by output voltage dropout voltage v dif (v) output voltage v out (v) condition typ. max. v out = 0.8 0.63 0.87 v out = 0.9 0.55 0.80 1.0 v out < 1.2 0.50 0.72 1.2 v out < 1.4 0.42 0.62 1.4 v out < 1.7 0.37 0.55 1.7 v out < 2.1 0.30 0.46 2.1 v out < 2.5 0.25 0.39 2.5 v out < 3.0 0.23 0.35 3.0 v out 3.6 i out = 150ma 0.21 0.32 recommended operating conditions (electrical characteristics) all of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. the semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. and the semiconductor de vices may receive serious damage when they continue to operate over the recommended operating conditions. the start-up sequense circuit the start-up sequence circuit is applied in c version. when the ce of vr1 and vr2 started-up at the same time, vr2 stands-up in 100 s delay after vr1 stands up simultaneously with ce. moreover, to disabling is depending upon the setting output voltage and the external capacitors. vr1 reduces the output vo ltage by the nch driver of about 50 , and vr2 reduces the output voltage by the nch driver of about 10 . c ver. ce1&ce2 v out1 100 s delay v out2 50 discharge 10 discharge
rp152x 8 typical applications v out2 v out1 v in v out2 v out1 gnd ce1 ce2 v dd rp152x series c3 c2 c1 c1 = c2 = c3 = ceramic 0.22 f (external components) murata : grm155b31a224ke18b technical notes when using these ics, consider the following points: pcb layout in these ics, phase compensation is made for securing stable operation even if the load current is varied. for this purpose, use capacitors (0.22 f or more) for c2 and c3 with good frequency characteristics and esr (equivalent series resistance). (note: if additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. becaus e of this, test these ics with as same external components as ones to be used on the pcb.) phase compensation make v dd and gnd lines sufficient. if their impedance is high, noise pickup or unstable operation may result. connect capacitors with a capacitance value as much as 0.22 f or more between v dd and gnd pin, and as close as possible to the pins (c1). set external components, especially the output capacito rs, as close as possible to the ics, and make wiring as short as possible (c2 / c3).
rp152x 9 test circuits rp152x series ce2 v out2 ce1 v out1 v dd gnd c1 v v v out2 i out2 v out1 i out1 c2 c3 c1=c2=c3=0.22 rp152x series ce2 v out2 ce1 v out1 v dd gnd c1 c2 c3 a i ss c1=c2=c3=0.22 basic test circuit test circuit for supply current rp152x sereis ce2 v out 2 ce1 v out 1 v dd gnd i out 2 i out 1 c2 c3 pg pulse generato r c2=c3=0.22 rp152x series ce2 v out 2 ce1 v out 1 v dd gnd c1 i out 1b c2 c3 i out 1a i out 2a i out 2b c1=c2=c3=0.22 test circuit for ripple rejection test circuits for load transient response & line transient response
rp152x 10 typical characteristics 1) output voltage vs. output current (t opt = 25 c) 0.8v(vr1/vr2) 2.5v(vr1/vr2) 0 0.9 0.3 0.2 0.6 0.5 0.4 0.7 0.8 0.1 0 50 150 200 100 300 250 output current i out (ma) output voltage v out (v) v in =1.4v v in =1.5v v in =1.6v v in =1.8v v in =2.8v v in =3.6v 0 3.0 1.5 1.0 2.5 2.0 0.5 0 50 150 200 100 300 250 output current i out (ma) output voltage v out (v) v in =2.8v v in =3.5v v in =4.5v 3.6v(vr1/vr2) 0 4.0 1.5 1.0 2.5 2.0 3.0 3.5 0.5 0 50 150 200 100 300 250 output current i out (ma) output voltage v out (v) v in =3.9v v in =4.6v v in =5.0v 2) output voltage vs. input voltage (t opt = 25 c) 0.8v(vr1/vr2) 2.5v(vr1/vr2) 0 1.0 0.3 0.2 0.5 0.4 0.6 0.8 0.7 0.9 0.1 01 34 25 input voltage v in (v) output voltage v out (v) i out =1ma i out =30ma i out =50ma 0 3.0 0.5 1.0 2.0 1.5 2.5 01 34 25 input voltage v in (v) output voltage v out (v) i out =1ma i out =30ma i out =50ma
rp152x 11 3.6v(vr1/vr2) 0 4.0 0.5 1.0 2.0 1.5 3.0 2.5 3.5 01 34 25 input voltage v in (v) output voltage v out (v) i out =1ma i out =30ma i out =50ma 3) supply current vs. input voltage 0.8v(vr1/vr2) 2.5v(vr1/vr2) 0 40 10 20 30 034 2 15 input voltage v in (v) supply current i ss ( a) 0 40 10 20 30 034 2 15 input voltage v in (v) supply current i ss ( a) 3.6v(vr1/vr2) 0 40 10 20 30 034 2 15 input voltage v in (v) supply current i ss ( a)
rp152x 12 4) output voltage vs. temperature 0.8v(vr1/vr2) 2.5v(vr1/vr2) 0.78 0.83 0.79 0.80 0.81 0.82 -40 50 75 25 0 -25 85 temperature topt ( c) output voltage v out (v) 2.45 2.50 2.46 2.47 2.48 2.49 -40 50 75 25 0 -25 85 temperature topt ( c) output voltage v out (v) 3.6v(vr1/vr2) 3.55 3.60 3.56 3.57 3.58 3.59 -40 50 75 25 0 -25 85 temperature topt ( c) output voltage v out (v) 5) supply current vs. temperature 0.8v(vr1/vr2) 2.5v(vr1/vr2) 0 50 10 20 30 40 -40 50 75 25 0 -25 85 temperature topt ( c) supply current i ss ( a) 0 50 10 20 30 40 -40 50 75 25 0 -25 85 temperature topt ( c) supply current i ss ( a)
rp152x 13 3.6v(vr1/vr2) 0 50 10 20 30 40 -40 50 75 25 0 -25 85 temperature topt ( c) supply current i ss ( a) 6) dropout voltage vs. output current 0.8v(vr1/vr2) 2.5v(vr1/vr2) 0 700 200 100 300 500 400 600 0 25 75 100 125 50 150 output current i out (ma) dropout voltage v dif (mv) t opt =85 c t opt =25 c t opt =-40 c 0 300 100 50 150 250 200 0 25 75 100 125 50 150 output current i out (ma) dropout voltage v dif (mv) t opt =85 c t opt =25 c t opt =-40 c 3.6v(vr1/vr2) 0 250 100 50 150 200 0 25 75 100 125 50 150 output current i out (ma) dropout voltage v dif (mv) t opt =85 c t opt =25 c t opt =-40 c
rp152x 14 7) dropout voltage vs. set output voltage 0 600 300 200 100 400 500 0.5 1.0 2.0 2.5 1.5 4.0 3.0 3.5 set output voltage v reg (v) dropout voltage v dif (mv) i out =150ma i out =50ma i out =30ma i out =10ma 8) minimum operating voltage 0 2.0 0.6 0.4 0.2 1.0 1.4 0.8 1.2 1.6 1.8 05075 25 150 100 125 output current i out (ma) input voltage v in (v) 9) ripple rejection vs. input voltage (c1 = none, c2 = ceramic 0.22 f, ripple = 0.2vp-p,t opt = 25 c) 2.5v(vr1/vr2) 2.5v(vr1/vr2) 0 90 30 20 10 50 70 80 40 60 2.5 3.0 4.0 4.5 3.5 5.0 input voltage v in (v) ripple rejection rr (db) f=0.1khz f=1khz f=10khz f=100khz i out =1ma 0 90 30 20 10 50 70 80 40 60 2.5 3.0 4.0 4.5 3.5 5.0 input voltage v in (v) ripple rejection rr (db) f=0.1khz f=1khz f=10khz f=100khz i out =30ma hatched area is available for 0.8v output
rp152x 15 10) ripple rejection vs. frequency (c1 = none, c2 = ceramic 0.22 f, ripple = 0.2vp-p,t opt = 25 c) 0.8v(vr1/vr2) 2.5v(vr1/vr2) i out =1ma i out =30ma i out =150ma 0 10 100 40 20 60 80 90 30 50 70 v in =3.0v frequency f (khz) ripple rejection rr (db) 0.1 10 100 1 1000 i out =1ma i out =30ma i out =150ma 0 10 100 40 20 60 80 90 30 50 70 v in =3.5v frequency f (khz) ripple rejection rr (db) 0.1 10 100 1 1000 3.6v(vr1/vr2) i out =1ma i out =30ma i out =150ma 0 10 100 40 20 60 80 90 30 50 70 v in =4.6v frequency f (khz) ripple rejection rr (db) 0.1 10 100 1 1000 11) input transient response (i out = 30ma , tr = tf = 5 s, c1 = none, c2 = 0.22 f, t opt = 25 c ) 0.8v(vr1/vr2) 2.5v(vr1/vr2) 0.78 0.82 0.80 3 2 1 010 50 70 30 20 60 80 40 90 input voltage v in (v) output voltage input voltage time t ( s) output voltage v out (v) 2.48 2.52 2.50 5 4 3 010 50 70 30 20 60 80 40 90 input voltage v in (v) output voltage input voltage time t ( s) output voltage v out (v)
rp152x 16 3.6v(vr1/vr2) 3.59 3.61 3.60 6 5 4 3 010 50 70 30 20 60 80 40 90 input voltage v in (v) output voltage input voltage time t ( s) output voltage v out (v) 12) load transient response (tr = tf = 500 s, c1 = c2 = 0.22 f, t opt = 25 c ) 0.8v(vr1/vr2) 0.8v(vr1/vr2) 0.8 0.9 0.7 0.7 0.9 0.8 150 100 50 0 4 20 28 12 82432 16 36 v in =1.8v vr1 output voltage v out (v) vr1:output voltage vr2:output voltage i out =30ma vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output current 50ma 100ma 0.8 0.9 0.7 0.7 0.9 0.8 200 100 0 020 100 140 60 40 120 160 80 180 v in =1.8v vr1 output voltage v out (v) vr1:output voltage vr2:output voltage i out =30ma vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output current 0.1ma 150ma 0.8v(vr1/vr2) 0.8v(vr1/vr2) 0.8 0.9 0.7 0.7 0.9 0.8 150 100 50 0 4 20 28 12 82432 16 36 v in =1.8v vr1 output voltage v out (v) vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output voltage i out =30ma vr2:output voltage vr2:output current 50ma 100ma 0.8 0.9 0.7 0.7 0.9 0.8 200 100 0 020 100 140 60 40 120 160 80 180 v in =1.8v vr1 output voltage v out (v) vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output voltage i out =30ma vr2:output voltage vr2:output current 0.1ma 150ma
rp152x 17 2.5v(vr1/vr2) 2.5v(vr1/vr2) 2.5 2.6 2.4 2.4 2.6 2.5 150 100 50 0 4 20 28 12 82432 16 36 v in =3.5v vr1 output voltage v out (v) vr1:output voltage vr2:output voltage i out =30ma vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output current 50ma 100ma 2.5 2.6 2.4 2.4 2.6 2.5 200 100 0 020 100 140 60 40 120 160 80 180 v in =3.5v vr1 output voltage v out (v) vr1:output voltage vr2:output voltage i out =30ma vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output current 0.1ma 150ma 2.5v(vr1/vr2) 2.5v(vr1/vr2) 2.5 2.6 2.4 2.4 2.6 2.5 150 100 50 0 4 20 28 12 82432 16 36 v in =3.5v vr1 output voltage v out (v) vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output voltage i out =30ma vr2:output voltage vr2:output current 50ma 100ma 2.5 2.6 2.4 2.4 2.6 2.5 200 100 0 020 100 140 60 40 120 160 80 180 v in =3.5v vr1 output voltage v out (v) vr1:output voltage i out =30ma vr2:output voltage vr2 output voltage v out (v) output current i out (ma) time t ( s) vr2:output current 0.1ma 150ma 3.6v(vr1/vr2) 3.6v(vr1/vr2) 3.6 3.7 3.5 3.5 3.7 3.6 150 100 50 0 4 20 28 12 82432 16 36 v in =4.6v vr1 output voltage v out (v) vr1:output voltage vr2:output voltage i out =30ma vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output current 50ma 100ma 3.6 3.7 3.5 3.5 3.7 3.6 200 100 0 020 100 140 60 40 120 160 80 180 v in =4.6v vr1 output voltage v out (v) vr1:output voltage vr2:output voltage i out =30ma vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output current 0.1ma 150ma
rp152x 18 3.6v(vr1/vr2) 3.6v(vr1/vr2) 3.6 3.7 3.5 3.5 3.7 3.6 150 100 50 0 4 20 28 12 82432 16 36 v in =4.6v vr1 output voltage v out (v) vr1:output voltage i out =30ma vr2:output voltage vr2 output voltage v out (v) output current i out (ma) time t ( s) vr2:output current 50ma 100ma 3.6 3.7 3.5 3.5 3.7 3.6 200 100 0 020 100 140 60 40 120 160 80 180 v in =4.6v vr1 output voltage v out (v) vr2 output voltage v out (v) output current i out (ma) time t ( s) vr1:output voltage i out =30ma vr2:output voltage vr2:output current 0.1ma 150ma 13) turn on speed with ce pin (c1 = c2 = 0.22 f, t opt = 25 c ) 0.8v a/b version (vr1/ vr2), c version (vr1) 0.8v c version (vr2) 1.5 0.5 1.0 0 2.0 2101416 6 0812 418 v in =1.8v 0 0.2 0.6 0.4 0.8 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma 1.5 0.5 1.0 0 2.0 20 100 140160 60 0 80 120 40 180 v in =1.8v 0 0.2 0.6 0.4 0.8 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma 2.5v a/b version (vr1/ vr2), c version (vr1) 2.5v c version (vr2) 3 1 2 0 4 10 50 70 80 30 04060 20 90 v in =3.5v 0 0.7 2.1 1.4 2.8 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma 3 1 2 0 4 40 200 280 320 120 0 160 240 80 360 v in =3.5v 0 0.7 2.1 1.4 2.8 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma
rp152x 19 3.6v a/b version (vr1/ vr2), c version (vr1) 3.6v c version (vr2) 4 0 2 6 20 100 140 160 60 080 120 40 180 v in =4.6v 0 1 3 2 4 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma 4 0 2 6 40 200 280 320 120 0 160 240 80 360 v in =4.6v 0 1 3 2 4 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma 14) tum off speed with ce pin (c1 = c2 = 0.22 f, t opt =25 c) 0.8v b version( vr1/ vr2), c version (vr1) 0.8v c version (vr2) 1.5 0 0.5 1.0 2.0 20 100 140 160 60 080 120 40 180 v in =1.8v 0 0.2 0.6 0.4 0.8 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma 1.5 0 0.5 1.0 2.0 4202832 12 01624 836 v in =1.8v 0 0.2 0.6 0.4 0.8 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma 2.5v b version( vr1/ vr2), c version (vr1) 2.5v c version (vr2) 3 1 0 2 4 10 50 70 80 30 04060 20 90 v in =3.5v 0 0.7 2.1 1.4 2.8 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma 3 1 0 2 4 2101416 6 0812 418 v in =3.5v 0 0.7 2.1 1.4 2.8 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma
rp152x 20 3.6v b version( vr1/ vr2), c version (vr1) 3.6v c version (vr2) 4 0 2 6 10 50 70 80 30 04060 20 90 v in =4.6v 0 1 3 2 4 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma 4 0 2 6 2101416 6 0812 418 v in =4.6v 0 1 3 2 4 ce input voltage v ce (v) output voltage v out (v) time t ( s) output voltage ce input voltage i out =0ma i out =30ma i out =150ma
rp152x 21 esr vs. output current when using these ics, consider the following points: the relations between i out (output current) and esr of an output capacitor are shown below. the conditions when the white noise level is under 40 v (avg.) are marked as the hatched area in the graph. measurement conditions frequency band: 10hz to 2mhz temperature : ? 40 c to 85 c c1, c2 : 0.22 f (murata , grm155b10j224ke01) 0.8v(vr1/ vr2) 2.5v(vr1/ vr2) 0 75 125 25 50 100 150 output current i out (ma) esr ( ) v in =1.4v to 5.0v 0.01 100 1 0.1 10 t opt =85 c t opt =-40 c 0 75 125 50 25 100 150 output current i out (ma) esr ( ) v in =2.6v to 5.0v 0.01 100 1 0.1 10 t opt =85 c t opt =-40 c 3.6v(vr1/ vr2) 0 75 125 50 25 100 150 output current i out (ma) esr ( ) v in =3.7v to 5.0v 0.01 100 1 0.1 10 t opt =85 c t opt =-40 c
3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?4ijo:plpibnbp$?df *oufsobujpobm4bmft
 4ijo:plpibnb ,piplvlv :plpibnb$juz ,bobhbxb +bqbo 1ipof 'by  3*$0)&6301& /&5)&3-"/%4
#7 ?4fnjdpoevdups4vqqpsu$fousf 1spg8),fftpnmbbo %-"ntufmwffo 5if/fuifsmboet 10#py "$"ntufmwffo 1ipof 'by  3*$0)&-&$530/*$%&7*$&4,03&"$p -ue qpps )bftvohcvjmejoh  %bfdijepoh (bohobnhv 4fpvm ,psfb 1ipof 'by  3*$0)&-&$530/*$%&7*$&44)"/()"*$p -ue 3ppn /p#vjmejoh #j#p3pbe 1v%poh/fxejtusjdu 4ibohibj  1fpqmft3fqvcmjdpg$ijob 1ipof 'by  3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?5bjqfjp$?df 3ppn ' /p )fohzboh3e 5bjqfj$juz 5bjxbo 30$
1ipof 'by  iuuqxxxsjdpidpn-4* 5ifqspevdutboeuifqspevdutqfdjpdbujpoteftdsjcfejouijtepdvnfoubsftvckfduupdibohfps ejtdpoujovbujpopgqspevdujpoxjuipvuopujdfgpssfbtpot tvdibtjnqspwfnfou5ifsfgpsf cfgpsf efdjejohupvtfuifqspevdut qmfbtfsfgfsup3jdpitbmftsfqsf tfoubujwftgpsuifmbuftu jogpsnbujpouifsfpo 5ifnbufsjbmtjouijtepdvnfounbzopucfdpqjfepspuifsxjtfsfqspevdfejoxipmfpsjoqbsu xjuipvuqsjpsxsjuufodpotfoupg3jdpi 1mfbtfcftvsfupublfbozofdfttbszgpsnbmjujftvoefssfmfwboumbxtpssfhvmbujpotcfgpsf fyqpsujohpspuifsxjtfubljohpvupgzpvsdpvouszuifqspevdut psuifufdiojdbmjogpsnbujpo eftdsjcfeifsfjo 5ifufdiojdbmjogpsnbujpoeftdsjcfejouijtepdvnfoutipxtuzqjdbmdibsbdufsjtujdtpgboe fybnqmfbqqmjdbujpodjsdvjutgpsuifqspevdut5ifsfmfbtfpgt vdijogpsnbujpojtopuupcf dpotusvfebtbxbssbouzpgpsbhsboupgmjdfotfvoefs3jdpit psbozuijseqbsuztjoufmmfduvbm qspqfsuzsjhiutpsbozpuifssjhiut  5ifqspevdutmjtufejouijtepdvnfoubsfjoufoefeboeeftjhofe gpsvtfbthfofsbmfmfduspojd dpnqpofoutjotuboebsebqqmjdbujpot p$?dffrvjqnfou ufmfdpnnvo jdbujpofrvjqnfou  nfbtvsjohjotusvnfout dpotvnfsfmfduspojdqspevdut bnvtfnfou frvjqnfoufud
5iptf dvtupnfstjoufoejohupvtf bqspevdujobobqqmjdbujposfrvjsjohfyusfnfrvbmjuzboesfmjb cjmjuz  gpsfybnqmf jobijhimztqfdjpdbqqmjdbujpoxifsfuifgbjmvsf psnjtpqfsbujpopguifqspevdu dpvmesftvmujoivnbojokvszpsefbui bjsdsbgu tqbdfwfijdmf ovdmfbssfbdupsdpouspmtztufn  usb$?ddpouspmtztufn bvupnpujwfboe usbotqpsubujpofrvjqnfou dpncvtujpofrvjqnfou tbgfuz efwjdft mjgftvqqpsutztufnfud
tipvmepstudpoubduvt 8fbsfnbljohpvsdpoujovpvtf$?psuupjnqspwfuifrvbmjuzboesfmjbcjmjuzpgpvsqspevdut cvu tfnjdpoevdupsqspevdutbsfmjlfmzupgbjmxjuidfsubjoqspcbcjm juz*opsefsupqsfwfoubozjokvszup qfstpotpsebnbhftupqspqfsuzsftvmujohgspntvdigbjmvsf dvt upnfsttipvmecfdbsfgvmfopvhi upjodpsqpsbuftbgfuznfbtvsftjouifjseftjho tvdibtsfevoeb odzgfbuvsf psfdpoubjonfou gfbuvsfboegbjmtbgfgfbuvsf8fepopubttvnfbozmjbcjmjuz pssftqpotjcjmjuzgpsbozmpttps ebnbhfbsjtjohgspnnjtvtfpsjobqqspqsjbufvtfpguifqspevdut  "oujsbejbujpoeftjhojtopujnqmfnfoufejouifqspevduteftdsjcfejouijtepdvnfou  1mfbtfdpoubdu3jdpitbmftsfqsftfoubujwfttipvmezpvibwfboz rvftujpotpsdpnnfout dpodfsojohuifqspevdutpsuifufdiojdbmjogpsnbujpo 3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz  ricoh presented with the japan management quality award for 1999 . ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.  ricoh awarded iso 14001 certification. the ricoh group was awarded iso 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. our current aim is to obtain iso 14001 certification for all of our business offices. ricoh completed the organization of the lead-free production for all of our products. after apr. 1, 2006, we will ship out the lead free products only. thus, all products that will be shipped from now on comply with rohs directive.


▲Up To Search▲   

 
Price & Availability of RP152L002C-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X